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Markov Decision Process (MDP) is a discrete-time state-transition system suited to 

progressive decision making for models with uncertain elements. The impact of it has been 

significant in the fields of operations management in recent times. This thesis aims to find an 

optimal policy for an adaptive inventory model through the help of MDP. We consider a 

situation where a seller has only one type of product, of unit quantity for each cycle, to order to 

satisfy demands. Whether or not there will be demand of that product is a case of stochasticity. 

The demand can also only be of unit quantity for each cycle. The seller can either stock or issue a 

backorder of the product. However, inventory size or the number of issued backorders is limited. 

For each state of the inventory, only one of two actions can be chosen. The seller can either 

decide to buy, or not to buy the product based on the stochastic demand pattern. We approach 

this problem by using the MDP to iterate through possible policies. Our goal is to find the 

optimal policy that will recommend which actions to take in each inventory state that minimizes 

the cost of stocking or backordering. 
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CHAPTER ONE: INTRODUCTION 

Stochastic programming is a basis that provides outline for modeling optimization 

problems involving uncertainty [1]. Real world problems would always have some elements of 

uncertainty when mapped in a model. But the probability distribution outlining the data can be 

identifiable or estimated. Stochastic programming takes advantage of this fact to find an 

optimized solution for the model [17]. The goal in these cases would be to find some policy that 

satisfies all or at least, most of the conditions that define the problem, and then optimize the 

expectation or the outcome. 

Markov Decision Process (MDP) is such a model that is suited to progressive decision 

making for problems with uncertain or stochastic elements [2]. It maps out a specific 

environment for an agent, where it can determine the ideal behavior that optimizes the outcome 

of the whole model [7]. This optimization is achieved with a reward feedback system, where 

different actions are explored and measured depending on the predicted situations the agent will 

find itself in for taking those actions.   

 They are used in the fields related to control and robotics, manufacturing, economics, 

and many more. MDPs are particularly convenient when implemented along with dynamic 

programming and reinforcement learning methods [2][3]. In the field of manufacturing, the 

application of this method has been quite impactful. MDP is being used in fields such as 

scheduling, resource allocation, maintenance and repairing, process control and planning, 

database management, and many other with efficient results [4][16]. One of such fields is the 

inventory optimization which is becoming increasingly important for industries and companies 

nowadays. As the market is full of all kinds of ambiguity, it is considered important and difficult 
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to keep the inventory management up to the mark [5]. The problem discussed in this project 

concerns how much to order the product in each time period in order to meet the demand.  

1.1 Objective 

The objective of this project is to evaluate policies and find a suitable one that will 

recommend which action to take in each state of the inventory that optimizes the whole model. 

The methods for evaluating and finding the optimal policies would be: 

 Policy Iteration 

 Value Iteration 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Markov Decision Process 

Markov decision process is a model suited to progressive decision making for models 

with uncertain elements. The model consists of an environment in which all states can be 

conditioned under the Markov property, that is that the future is independent of the past given the 

present. the model also consists of an agent that interacts with the environment by means of 

taking actions [6][13]. The environment reacts to these actions by presenting the agent with a 

reward and a new state.  

 

Figure 1: Agent environment interaction in a Markov decision process [6] 

A Markov decision process is a tuple consisting of (𝑆, 𝐴, 𝑃, 𝑅, 𝛾).  

 𝑆 signifies a finite set of states 

 𝐴 signifies a finite set of actions 

 𝑃 signifies a state transition probability matrix 

 𝑅 signifies reward 

 𝛾 signifies a discount factor. 𝛾 Є [0,1] 

State: The states in MDP are formulated based on Markov property. That is that the 

future is independent of the past given the present [6][7][8]. The state collects the necessary 

information from the history, and once the current state is known, the previous information of 
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that state can be discarded. Based on the Markov theory, the current state is an adequate statistic 

of the future. In mathematical terms, a state 𝑆𝑡 is Markov if and only if 

ℙ[ 𝑆𝑡+1| 𝑆𝑡]  =  ℙ[ 𝑆𝑡+1| 𝑆1, … , 𝑆𝑡]  

 The equation signifies that, what happens next for a given state 𝑆𝑡+1 depends only on the 

previous state 𝑆𝑡 and not the states that came before that [2][7][16]. 

Action: For a given state, an agent is presented with a set of possible actions by the 

environment. The agent chooses the action based on the policy implemented in the model. By 

taking an action, the agent moves to the next state, while gaining a reward presented to it by the 

environment. 

State Transition Probability: For a Markov state 𝑠 and successor state 𝑠’, the state 

transition probability can be defined by, 

𝑃𝑠𝑠′ = ℙ[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠] 

It is a probability distribution over next possible successor states for a given state [7]. For 

a given environment, it defines transition probabilities from all states s to all successor states s’. 

 

Figure 2: State transition probability in matrix form 

Here, each row of the matrix will sum to 1 [7]. The probability that the agent moves into 

its new state is influenced by the chosen action. 

Reward: In a Markov decision process, a reward is a scaler feedback signal that indicates 

how well an agent is doing for taking actions in each time step. The agents’ goal is to maximize 
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the cumulative reward signal over all the taken actions for a given policy. The reward function 

can be defined as, 

𝑅𝑠  =  𝔼 [𝑅𝑡+1 | 𝑆𝑡 = 𝑆] 

 Here, 𝔼 is the expected reward for each action taken when the agent is in a state 𝑆 

[7][16]. 

 Discount Factor: Discount factor is an element that is used in Markov models for 

mathematical convenience. It can range from 0 to 1. If the value of the discount factor is 1, that 

means the model is undiscounted. Discount factor signifies how much an agent should care about 

the immediate or future rewards in terms of taking actions. Using it has some advantages as it 

avoids infinite returns in cyclic Markov processes by converging the algorithm. Also, since the 

future is uncertain, it can also influence the agent to take the instant reward instead of waiting for 

a larger reward in the future [6][7]. 

2.2 Value Function 

 The value function represents how good a state is in the long run for an agent to be in 

[6][9]. They indicate the long-term potential of the states after considering the states that are 

likely to appear after taking actions and the rewards available for that. In short, it is equal to the 

expected total reward for an agent starting from that state [6][9]. It depends on the policy that the 

agent follows in terms of choosing which actions to take in each state. For all the states, there 

exist one value function that carry higher value than all other functions. That function is called 

the optimal value function. The concept of value function is key to the approach that is followed 

in this paper. It is very important for the efficient search in the space of policies [6][9]. 
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State-Value Function: The state-value function of a Markov decision process is the expected 

return starting from state 𝑠, and then following policy 𝜋. If the state value can be denoted as 𝑣𝜋, 

then 

 𝑣𝜋(𝑠) =  𝔼𝝅 [𝐺𝑡 | 𝑆𝑡  =  𝑠] 

 Here, 𝔼𝝅 is the expected return from state 𝑠, and then following policy 𝜋 [6][7]. 

Action-Value Function: The action-value function is the expected return starting from 

state 𝑠, taking an action 𝑎, and then following policy 𝜋. If the action value can be denoted 

as 𝑞𝜋(𝑠, 𝑎), then 

𝑞𝜋(𝑠, 𝑎) =  𝔼𝝅 [𝐺𝑡 |𝑆𝑡  =  𝑠, 𝐴𝑡 = 𝑎] 

 Here, 𝔼𝝅 is the expected return from state 𝑠, taking an action 𝑎, and then following policy 

𝜋 [6][7]. 

2.3 Bellman Equation 

Bellman equation is an optimality equation associated with dynamic programming. A 

dynamic problem refers to simplifying a complicated problem by breaking it down into simpler 

sub problems in a recursive manner [10]. To achieve the optimal value of the state-value and 

action-value functions, this approach is used. It uses the concept of dynamical system’s state and 

of a value function, to define the functional equation. 

The state-value function can be broken down into immediate reward and the discounted 

value of next state [7], 

𝑣𝜋(𝑠)  =  𝔼𝝅 [𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1) | 𝑆𝑡  =  𝑠] 

 The action-value function can be similarly broken down [7], 

𝑞𝜋(𝑠, 𝑎) =  𝔼𝝅 [𝑅𝑡+1 + 𝛾𝑞𝜋((𝑆𝑡+1, 𝐴𝑡+1)|𝑆𝑡  =  𝑠, 𝐴𝑡 = 𝑎] 
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2.4 Policy Evaluation 

 Policy in a Markov decision process maps a state to an action, or a distribution over 

actions [18]. Evaluation of policies is the exploration of possible policies applicable for the 

model through iteration. Policy evaluation for a model is needed to find the optimal policy which 

optimizes the value function for each and every possible state. 

 For a given policy 𝜋 (𝑎 | 𝑠), the probability of taking an action 𝑎 in a state 𝑠 is given by 

the policy 𝜋. To iterate through a set of possible policies, each successive approximation is 

obtained by using the Bellman equation. After a certain number of iterations, the sequence 

converges [6][18]. 

 To produce each successive approximation, iterative policy evaluation applies the same 

operation to each state. It replaces the old value of 𝑠 with a new value obtained from the old 

values of the successor states of 𝑠, and the expected immediate rewards, along all the one-step 

transitions possible under the policy being evaluated. Each iteration of iterative policy evaluation 

updates the value of every state once to produce the new approximative value function [6][18]. 
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CHAPTER THREE: PROBLEM DESCRIPTION 

3.1 Model Description 

 We consider an inventory problem where a seller has only one type of product, of unit 

quantity for each cycle, to order to satisfy demands. Whether or not there will be demand of that 

product is a case of stochasticity. The demand can also only be of unit quantity for each cycle. 

The seller can either stock or issue a backorder of the product. However, the seller can stock a 

maximum of 𝑁 products and a backorder of maximum 𝑀 products for the entire scenario. For 

each state of the inventory, only one of two actions can be chosen. The seller can either decide to 

buy, or not to buy the product based on the policy. We approach this problem by using the MDP 

to iterate through possible policies. Our objective is to find the optimal policy that will 

recommend which actions to take in each inventory state that minimizes the cost of stocking or 

backordering. 

3.2 Assumptions 

 The model assumptions are mentioned below. 

1. The demand is a single product type. 

2. The demand is stochastic. There might or might not be a demand for the product each 

day. If there is a demand, it can only be one unit of the product per day. 

3. The seller can only collect one unit of the product before the start of each cycle, which is, 

in this case, a day. He will follow a policy for this collection. 

4. There can be 4 possible situations in this problem. 

a. The seller has collected the product, and there is a demand. 

b. The seller has collected the product, and there is no demand. 

c. The seller has not collected the product, and there is a demand. 
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d. The seller has not collected the product, and there is no demand. 

5. For the situation of 4.a., when the seller has collected the product and there is a demand, 

he will end up being in the state from the previous cycle. 

6. For the situation of 4.b., when the seller has collected the product and there is no demand, 

he can stock the product for the following day and increase inventory. However, whether 

he will collect the product for that day is part of the problem and not definite. The seller 

can stock a maximum of 𝑁 products for the entire scenario. If the number of stocked 

products exceed 𝑁, the problem will meet terminal ends. 

7. For the situation of 4.c., when the seller has not collected the product and there is a 

demand, the seller must backorder one unit of product. However, whether he will 

backorder the product for that day is part of the problem and not definite. The seller can 

do a backorder of maximum 𝑀 products for the entire scenario. If the number of 

backorders exceed 𝑀, the problem will meet terminal ends. 

8. For the situation of 4.d., when the seller has not collected the product and there is no 

demand, the seller will end up being in the state from the previous cycle. 

3.3 Formulation 

States: We consider an inventory problem with a single product type. The maximum 

number of the product the seller can stock is 𝑁, and the maximum number of the product the 

seller can backorder is 𝑀. The states for this model are formulated based on the states. If the 

maximum number of the product the seller can stock is 𝑁, and the maximum number of the 

product the seller can backorder is 𝑀, then based on the inventory levels as mentioned 

previously, the states are; 𝑁, 𝑁 –  1, … , 𝑁 – (𝑁 –  1), 0, 𝑀 – (𝑀 –  1), … , 𝑀 –  1, 𝑀. 
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Actions: The seller can choose from two options when he has to take an action before the 

start of each cycle (day). The actions are, 

a. To buy 

b. Not to buy. 

The actions are controlled by a policy. 

Rewards: The agents’ goal is to maximize the cumulative reward signal over all the 

taken actions for a given policy. The reward has been set in such a way so that the agent always 

tries to stay in the states that optimize the model by minimizing the cost of stocking or 

backordering. 

The rewards for 3 separate case studies are mentioned here, 

 Case Study 1 – 3 States: The rewards for the case study with 3 possible states are 

mentioned below, 

a. State Zero, Action Buy = 12.5 

b. State Zero, Action No Buy = 12.5 

c. State Positive One, Action Buy = -10 

d. State Positive One, Action No Buy = 10 

e. State Negative One, Action Buy = 10 

f. State Negative One, Action No Buy = -10 

 Case Study 2 – 5 States: The rewards for the case study with 5 possible states are 

mentioned below, 

a. State Zero, Action Buy = 12.5 

b. State Zero, Action No Buy = 12.5 

c. State Positive One, Action Buy = -10 
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d. State Positive One, Action No Buy = 10 

e. State Positive Two, Action Buy = -7.5 

f. State Positive Two, Action No Buy = 7.5 

g. State Negative One, Action Buy = 10 

h. State Negative One, Action No Buy = -10 

i. State Negative Two, Action Buy = 7.5 

j. State Negative Two, Action No Buy = -7.5 

 Case Study 3 – 9 States: The rewards for the case study with 5 possible states are 

mentioned below, 

a. State Zero, Action Buy = 12.5 

b. State Zero, Action No Buy = 12.5 

c. State Positive One, Action Buy = -10 

d. State Positive One, Action No Buy = 10 

e. State Positive Two, Action Buy = -7.5 

f. State Positive Two, Action No Buy = 7.5 

g. State Positive Three, Action Buy = -5 

h. State Positive Three, Action No Buy = 5 

i. State Positive Four, Action Buy = -2.5 

j. State Positive Four, Action No Buy = 2.5 

k. State Negative One, Action Buy = 10 

l. State Negative One, Action No Buy = -10 

m. State Negative Two, Action Buy = 7.5 

n. State Negative Two, Action No Buy = -7.5 
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o. State Negative Three, Action Buy = 5 

p. State Negative Three, Action No Buy = -5 

q. State Negative Four, Action Buy = 2.5 

r. State Negative Four, Action No Buy = -2.5 

Policy: The policy has been set in such a way that the agent will always choose the 

greedy option when he switches to the next state by choosing an action. The agent will choose 

the greedy option for 90% of the time in these cases. 

Transition Probability Matrix: The transition probability matrix has been set in such a 

way that epitomizes the environment. 

Discount Factor: The discount factor for this model has been set as 0.75 for all the 

scenarios. 

3.4 Approach 

 The model is approached through both policy iteration and value iteration. 3 case studies 

have been shown with 3 different number of states, with demand probability varying from 0 to 1. 

 For the policy iteration, initially, an arbitrary policy has been applied to the model. This 

resulted in the convergence of the action value functions. These action value functions then 

suggested or recommended the next possible policy. Applying the new improved policy, a new 

set of action value functions were obtained, which would then go on to suggest the next possible 

policy. This evaluation and iteration would go on until the action value functions suggest the 

same policy from where they were extracted. This resulted in the convergence of the optimal 

policy that would suggest which actions to take in each state of the whole model. 
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Figure 3: Visual representation of the MDP model 

 For the value iteration, the same theory has been applied. But instead of waiting for the 

action values to converge, this methodology would extract the action value functions after one 

iteration. This new set of action value functions would recommend the next policy. 
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CHAPTER FOUR: RESULT AND DISCUSSION 

4.1 Case Study 1 – 3 States 

 In case study 1, the scenario has 3 inventory states: Negative one, Zero, and Positive one. 

Figure 4 illustrates the action value functions for each state, which represents the X axis, based 

on the demand, which represents Y axis. Each graph signifies a single state. From figure 4, it can 

be seen that when the inventory is in negative one state, the more profitable action would always 

be to ‘Buy’, regardless of the demand. In terms of positive one inventory state, it is the opposite, 

where ‘No Buy’ is the more profitable option.  

   

 

  Figure 4: Action value functions for 3 states inventory 

 When it comes to zero inventory state, it can be seen that the recommended actions 

change based on the demand pattern. When the demand probability is more than 0.5, the more 
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profitable action would be to choose ‘Buy’, and when the demand pattern is less than 0.5, the 

more profitable action would be to choose ‘No Buy’. The recommended actions based on the 

demand pattern is showed in table 1. This table is the optimal policy for an inventory system 

with 3 states under conditions mentioned in Chapter 3.1 and 3.2. 

Table 1: Optimal policy for 3 states inventory 

Demand 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

N1 Inventory State B B B B B B B B B B B 

Zero Inventory State NB NB NB NB NB B/NB B B B B B 

P1 Inventory State NB NB NB NB NB NB NB NB NB NB NB 

 

4.2 Case Study 2 – 5 States 

 In case study 2, the scenario has 5 inventory states: Negative two, Negative one, Zero, 

Positive one, and Positive two. Figure 5 illustrates the action value functions for each state, 

which represents the X axis, based on the demand, which represents Y axis. Each graph signifies 

a single state. From figure 5, it can be seen that when the inventory is in negative two and 

negative one states, the more profitable action would always be to ‘Buy’, regardless of the 

demand. It can also be seen that the difference between the action value functions of ‘Buy’ and 

‘No Buy’ reduces when the inventory states get closer to zero inventory state. In terms of 

positive two and positive one inventory states, it is the opposite, where ‘No Buy’ is the more 

profitable option. But the difference between the action value functions of ‘Buy’ and ‘No Buy’ 

reduces here as well, albeit, the ‘No Buy’ actions values boasting more profit than ‘Buy’ actions, 

which is the inverse in terms of the negative two and negative one states.  

 When it comes to zero inventory state, the results are similar to case study 1. It can be 

seen from the figure 5 that the recommended actions change based on the demand pattern. When 

the demand probability is more than 0.5, the more profitable action would be to choose ‘Buy’, 
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and when the demand pattern is less than 0.5, the more profitable action would be to choose ‘No 

Buy’.  

    

    

 

Figure 5: Action value functions for 5 states inventory 
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 The recommended actions based on the demand pattern is showed in table 1. This table is 

the optimal policy for an inventory system with 5 states under conditions mentioned in Chapter 

3.1 and 3.2. 

Table 2: Optimal policy for 5 states inventory 

Demand 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

N2 Inventory State B B B B B B B B B B B 

N1 Inventory State B B B B B B B B B B B 

Zero Inventory State NB NB NB NB NB B/NB B B B B B 

P1 Inventory State NB NB NB NB NB NB NB NB NB NB NB 

P2 Inventory State NB NB NB NB NB NB NB NB NB NB NB 

 

4.3 Case Study 3: 9 States 

 In case study 3, the scenario has 9 inventory states: Negative Four, Negative three, 

Negative two, Negative one, Zero, Positive one, Positive two, Positive three, and Positive Four. 

Figure 6 illustrates the action value functions for each state, which represents the X axis, based 

on the demand, which represents Y axis. Each graph signifies a single state. From figure 6, it can 

be seen that when the inventory is in negative four, negative three, negative two and negative one 

states, the more profitable action would always be to ‘Buy’, regardless of the demand. It can also 

be seen, as it can be seen from case study 2, that the difference between the action value 

functions of ‘Buy’ and ‘No Buy’ reduces as the inventory states get closer to zero inventory 

state. In terms of positive four, positive three, positive two and positive one inventory states, it is 

the opposite, where ‘No Buy’ is the more profitable option. But the difference between the action 

value functions of ‘Buy’ and ‘No Buy’ reduces here as well, albeit, the ‘No Buy’ actions values 

boasting more profit than ‘Buy’ actions, which is the inverse in terms of the negative states.  

 When it comes to zero inventory state, the results are similar to case study 1 and case 

study 2. It can be seen from the figure 6 that the recommended actions change based on the 
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demand pattern. When the demand probability is more than 0.5, the more profitable action would 

be to choose ‘Buy’, and when the demand pattern is less than 0.5, the more profitable action 

would be to choose ‘No Buy’.  

    

    

    

Figure 6: Action value functions for 9 states inventory (a) 
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Figure 7: Action value functions for 9 states inventory (b) 

 The recommended actions based on the demand pattern for case study 3 is showed in 

table 1. This table is the optimal policy for an inventory system with 5 states under conditions 

mentioned in Chapter 3.1 and 3.2. 

Table 3: Optimal policy for 9 states inventory 

Demand 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

N4 Inventory State B B B B B B B B B B B 

N3 Inventory State B B B B B B B B B B B 

N2 Inventory State B B B B B B B B B B B 

N1 Inventory State B B B B B B B B B B B 

Zero Inventory State NB NB NB NB NB B/NB B B B B B 

P1 Inventory State NB NB NB NB NB NB NB NB NB NB NB 

P2 Inventory State NB NB NB NB NB NB NB NB NB NB NB 

P3 Inventory State NB NB NB NB NB NB NB NB NB NB NB 

P4 Inventory State NB NB NB NB NB NB NB NB NB NB NB 
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CONCLUSION 

 Inventory optimization is a critical part of a manufacturing operation. The management 

of it has a large impact on the profit of the whole system. This project aimed to find a suitable 

solution for a simple inventory problem consisting of unit demand quantity for each cycle (day). 

The goal was to find an optimal policy for each inventory state. 

 From the results, it can be concluded that, in no situation is buying a good action when 

the inventory is in a positive state. Neither is not buying when the inventory is in a negative state. 

Even though the solution can be seen as straightforward, this model offered an insight on how 

the possible actions compare in terms of profit. The symmetry in the results was purely because 

of the reward functions. If the reward function had followed variation instead of the symmetry, 

the action value functions would not have followed a pattern like it did in terms of the solution. 

 This work can be further expanded to inventory problems with more than one demand 

quantity. By setting the pattern of the demand as a probability distribution, and by increasing the 

number of inventory states, this model, via a few modifications, can be used to optimize the 

inventory states with larger demand quantity. This model can also be used in single state 

inventory problems and perishable inventory problems with necessary modifications. 
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APPENDICES 

APPENDIX A: CODE 

A1: CASE STUDY 1 

import numpy as np 

 

iteration = 500 

df        = 0.75 

 

zero0 = 0 

p10   = 0 

p20   = 0 

n10   = 0 

n20   = 0 

 

rz_buy    = 12.5 

rz_nobuy  = 12.5 

rp1_buy   = -10 

rp1_nobuy = 10 

rn1_buy   = 10 

rn1_nobuy = -10 

 

zero = np.zeros([1,iteration]) 

p1   = np.zeros([1,iteration]) 
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p2   = 0 

n1   = np.zeros([1,iteration]) 

n2   = 0 

 

policy = [.1, .9] 

pc_buy_z  = policy[np.random.randint(0,2)] 

pc_buy_p1 = policy[np.random.randint(0,2)] 

pc_buy_n1 = policy[np.random.randint(0,2)] 

 

pc_buy_z_tmp = 0 

pc_buy_p1_tmp = 0 

pc_buy_n1_tmp = 0 

 

count = 0 

 

Final_Data = [] 

 

for i, prod in enumerate(np.arange(0,1.1,0.1)): 

    while (True): 

        count += 1 

           

        zero[0,0] = pc_buy_z *(rz_buy  + df*(prod*zero0 + (1 - prod)*p10)) + (1-pc_buy_z) 

*(rz_nobuy  + df*((1 - prod)*zero0 + prod*n10)) 
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        p1[0,0]   = pc_buy_p1*(rp1_buy + df*(prod*p10   + (1 - prod)*p20)) + (1-

pc_buy_p1)*(rp1_nobuy + df*((1 - prod)*p10   + prod*zero0)) 

        n1[0,0]   = pc_buy_n1*(rn1_buy + df*((1 - prod)*zero0 + prod*n10)) + (1-

pc_buy_n1)*(rn1_nobuy + df*((1 - prod)*n10   + prod*n20)) 

     

        for i in range(iteration-1): 

            zero[0,i+1] = pc_buy_z *(rz_buy  + df*(prod*zero[0,i] + (1 - prod)*p1[0,i])) + (1-

pc_buy_z) *(rz_nobuy  + df*((1 - prod)*zero[0,i] + prod*n1[0,i])) 

            p1[0,i+1]   = pc_buy_p1*(rp1_buy + df*(prod*p1[0,i]   + (1 - prod)*p2))      + (1-

pc_buy_p1)*(rp1_nobuy + df*((1 - prod)*p1[0,i]   + prod*zero[0,i])) 

            n1[0,i+1]   = pc_buy_n1*(rn1_buy + df*((1 - prod)*zero[0,i] + prod*n1[0,i])) + (1-

pc_buy_n1)*(rn1_nobuy + df*((1 - prod)*n1[0,i]   + prod*n2)) 

         

        zero_buy   = (zero[0,iteration-1] + p1[0,iteration-1])/2 

        zero_nobuy = (zero[0,iteration-1] + n1[0,iteration-1])/2 

         

        p1_buy     = (p1[0,iteration-1] + p2)/2 

        p1_nobuy   = (p1[0,iteration-1] + zero[0,iteration-1])/2 

         

        n1_buy     = (zero[0,iteration-1] + n1[0,iteration-1])/2 

        n1_nobuy   = (n1[0,iteration-1] + n2)/2 

 

        if zero_buy > zero_nobuy: 
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            pc_buy_z_tmp = 0.9 

        else: 

            pc_buy_z_tmp = 0.1 

             

        if p1_buy > p1_nobuy: 

            pc_buy_p1_tmp = 0.9 

        else: 

            pc_buy_p1_tmp = 0.1 

             

        if n1_buy > n1_nobuy: 

            pc_buy_n1_tmp = 0.9 

        else: 

            pc_buy_n1_tmp = 0.1 

             

        if pc_buy_z == pc_buy_z_tmp and pc_buy_p1 == pc_buy_p1_tmp and pc_buy_n1 == 

pc_buy_n1_tmp: 

           break 

     

        else: 

            pc_buy_z = pc_buy_z_tmp 

            pc_buy_p1 = pc_buy_p1_tmp  

            pc_buy_n1 = pc_buy_n1_tmp     

    



www.manaraa.com

 

25 

 

    avf_final = np.array([[prod, n1_buy, n1_nobuy, zero_buy, zero_nobuy, p1_buy, p1_nobuy]]) 

     

    Final_Data.append(avf_final) 

     

Final_Data = np.array(Final_Data).reshape([11,7]) 

A2: Case Study 2 

 

import numpy as np 

 

iteration = 5000 

df        = 0.75 

 

zero0 = 0 

p10   = 0 

p20   = 0 

p30   = 0 

n10   = 0 

n20   = 0 

n30   = 0 

 

rz_buy    = 12.5 

rz_nobuy  = 12.5 

rp1_buy   = -10 
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rp1_nobuy = 10 

rp2_buy   = -7.5 

rp2_nobuy = 7.5 

rn1_buy   = 10 

rn1_nobuy = -10 

rn2_buy   = 7.5 

rn2_nobuy = -7.5 

 

zero = np.zeros([1,iteration]) 

p1   = np.zeros([1,iteration]) 

p2   = np.zeros([1,iteration]) 

p3   = 0 

n1   = np.zeros([1,iteration]) 

n2   = np.zeros([1,iteration]) 

n3   = 0 

 

policy = [.1, .9] 

pc_buy_z  = policy[np.random.randint(0,2)] 

pc_buy_p1 = policy[np.random.randint(0,2)] 

pc_buy_p2 = policy[np.random.randint(0,2)] 

pc_buy_n1 = policy[np.random.randint(0,2)] 

pc_buy_n2 = policy[np.random.randint(0,2)] 
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pc_buy_z_tmp  = 0 

pc_buy_p1_tmp = 0 

pc_buy_p2_tmp = 0 

pc_buy_n1_tmp = 0 

pc_buy_n2_tmp = 0 

 

count = 0 

 

Final_Data = [] 

 

for i, prod in enumerate(np.arange(0,1.1,0.1)): 

    while (True): 

        count += 1 

         

        zero[0,0] = pc_buy_z *(rz_buy  + df*(prod*zero0 + (1 - prod)*p10)) + (1-pc_buy_z) 

*(rz_nobuy  + df*((1 - prod)*zero0 + prod*n10)) 

        p1[0,0]   = pc_buy_p1*(rp1_buy + df*(prod*p10   + (1 - prod)*p20)) + (1-

pc_buy_p1)*(rp1_nobuy + df*((1 - prod)*p10   + prod*zero0)) 

        p2[0,0]   = pc_buy_p2*(rp2_buy + df*(prod*p20   + (1 - prod)*p30)) + (1-

pc_buy_p2)*(rp2_nobuy + df*((1 - prod)*p20   + prod*p10)) 

        n1[0,0]   = pc_buy_n1*(rn1_buy + df*((1 - prod)*zero0 + prod*n10)) + (1-

pc_buy_n1)*(rn1_nobuy + df*((1 - prod)*n10   + prod*n20)) 
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        n2[0,0]   = pc_buy_n2*(rn2_buy + df*((1 - prod)*n10   + prod*n20)) + (1-

pc_buy_n2)*(rn2_nobuy + df*((1 - prod)*n20   + prod*n30)) 

     

         

        for i in range(iteration-1): 

            zero[0,i+1] = pc_buy_z *(rz_buy  + df*(prod*zero[0,i] + (1 - prod)*p1[0,i])) + (1-

pc_buy_z) *(rz_nobuy  + df*((1 - prod)*zero[0,i] + prod*n1[0,i])) 

            p1[0,i+1]   = pc_buy_p1*(rp1_buy + df*(prod*p1[0,i]   + (1 - prod)*p2[0,i])) + (1-

pc_buy_p1)*(rp1_nobuy + df*((1 - prod)*p1[0,i]   + prod*zero[0,i])) 

            p2[0,i+1]   = pc_buy_p2*(rp2_buy + df*(prod*p2[0,i]   + (1 - prod)*p3))      + (1-

pc_buy_p2)*(rp2_nobuy + df*((1 - prod)*p2[0,i]   + prod*p1[0,i])) 

            n1[0,i+1]   = pc_buy_n1*(rn1_buy + df*((1 - prod)*zero[0,i] + prod*n1[0,i])) + (1-

pc_buy_n1)*(rn1_nobuy + df*((1 - prod)*n1[0,i]   + prod*n2[0,i])) 

            n2[0,i+1]   = pc_buy_n2*(rn2_buy + df*((1 - prod)*n1[0,i]   + prod*n2[0,i])) + (1-

pc_buy_n2)*(rn2_nobuy + df*((1 - prod)*n2[0,i]   + prod*n3)) 

     

        zero_buy = (zero[0,iteration-1] + p1[0,iteration-1])/2 

        zero_nobuy = (zero[0,iteration-1] + n1[0,iteration-1])/2 

         

        p1_buy = (p1[0,iteration-1] + p2[0,iteration-1])/2 

        p1_nobuy = (p1[0,iteration-1] + zero[0,iteration-1])/2 

         

        p2_buy = (p2[0,iteration-1] + p3)/2 
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        p2_nobuy = (p2[0,iteration-1] + p1[0,iteration-1])/2 

         

        n1_buy = (zero[0,iteration-1] + n1[0,iteration-1])/2 

        n1_nobuy = (n1[0,iteration-1] + n2[0,iteration-1])/2 

         

        n2_buy = (n2[0,iteration-1] + n1[0,iteration-1])/2 

        n2_nobuy = (n2[0,iteration-1] + n3)/2 

         

        if zero_buy > zero_nobuy: 

            pc_buy_z_tmp = 0.9 

        else: 

            pc_buy_z_tmp = 0.1 

             

        if p1_buy > p1_nobuy: 

            pc_buy_p1_tmp = 0.9 

        else: 

            pc_buy_p1_tmp = 0.1 

         

        if p2_buy > p2_nobuy: 

            pc_buy_p2_tmp = 0.9 

        else: 

            pc_buy_p2_tmp = 0.1 
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        if n1_buy > n1_nobuy: 

            pc_buy_n1_tmp = 0.9 

        else: 

            pc_buy_n1_tmp = 0.1 

         

        if n2_buy > n2_nobuy: 

            pc_buy_n2_tmp = 0.9 

        else: 

            pc_buy_n2_tmp = 0.1 

     

        if pc_buy_z == pc_buy_z_tmp and pc_buy_p1 == pc_buy_p1_tmp and pc_buy_p2 == 

pc_buy_p2_tmp and pc_buy_n1 == pc_buy_n1_tmp and pc_buy_n2 == pc_buy_n2_tmp: 

            break 

     

        else: 

            pc_buy_z  = pc_buy_z_tmp 

            pc_buy_p1 = pc_buy_p1_tmp  

            pc_buy_p2 = pc_buy_p2_tmp  

            pc_buy_n1 = pc_buy_n1_tmp 

            pc_buy_n2 = pc_buy_n2_tmp 

 

    avf_final = np.array([[prod,n2_buy, n2_nobuy, n1_buy, n1_nobuy, zero_buy, zero_nobuy, 

p1_buy, p1_nobuy, p2_buy, p2_nobuy]]) 
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    Final_Data.append(avf_final) 

     

Final_Data = np.array(Final_Data).reshape([11,11]) 

A3: CASE STUDY 3 

import numpy as np 

 

iteration = 500 

df        = 0.75 

 

zero0 = 0 

p10   = 0 

p20   = 0 

p30   = 0 

p40   = 0 

p50   = 0 

n10   = 0 

n20   = 0 

n30   = 0 

n40   = 0 

n50   = 0 

 

rz_buy    = 12.5 
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rz_nobuy  = 12.5 

rp1_buy   = -10 

rp1_nobuy = 10 

rp2_buy   = -7.5 

rp2_nobuy = 7.5 

rp3_buy   = -5 

rp3_nobuy = 5 

rp4_buy   = -2.5 

rp4_nobuy = 2.5 

rn1_buy   = 10 

rn1_nobuy = -10 

rn2_buy   = 7.5 

rn2_nobuy = -7.5 

rn3_buy   = 5 

rn3_nobuy = -5 

rn4_buy   = 2.5 

rn4_nobuy = -2.5 

 

zero = np.zeros([1,iteration]) 

p1   = np.zeros([1,iteration]) 

p2   = np.zeros([1,iteration]) 

p3   = np.zeros([1,iteration]) 

p4   = np.zeros([1,iteration]) 
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p5   = 0 

n1   = np.zeros([1,iteration]) 

n2   = np.zeros([1,iteration]) 

n3   = np.zeros([1,iteration]) 

n4   = np.zeros([1,iteration]) 

n5   = 0 

 

policy = [.1, .9] 

pc_buy_z  = policy[np.random.randint(0,2)] 

pc_buy_p1 = policy[np.random.randint(0,2)] 

pc_buy_p2 = policy[np.random.randint(0,2)] 

pc_buy_p3 = policy[np.random.randint(0,2)] 

pc_buy_p4 = policy[np.random.randint(0,2)] 

pc_buy_n1 = policy[np.random.randint(0,2)] 

pc_buy_n2 = policy[np.random.randint(0,2)] 

pc_buy_n3 = policy[np.random.randint(0,2)] 

pc_buy_n4 = policy[np.random.randint(0,2)] 

 

pc_buy_z_tmp  = 0 

pc_buy_p1_tmp = 0 

pc_buy_p2_tmp = 0 

pc_buy_p3_tmp = 0 

pc_buy_p4_tmp = 0 
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pc_buy_n1_tmp = 0 

pc_buy_n2_tmp = 0 

pc_buy_n3_tmp = 0 

pc_buy_n4_tmp = 0 

 

count = 0 

 

Final_Data = [] 

 

for i, prod in enumerate(np.arange(0,1.1,0.1)): 

    while (True): 

        count += 1 

        

        zero[0,0] = pc_buy_z *(rz_buy  + df*(prod*zero0 + (1 - prod)*p10)) + (1-pc_buy_z) 

*(rz_nobuy  + df*((1 - prod)*zero0 + prod*n10)) 

        p1[0,0]   = pc_buy_p1*(rp1_buy + df*(prod*p10   + (1 - prod)*p20)) + (1-

pc_buy_p1)*(rp1_nobuy + df*((1 - prod)*p10   + prod*zero0)) 

        p2[0,0]   = pc_buy_p2*(rp2_buy + df*(prod*p20   + (1 - prod)*p30)) + (1-

pc_buy_p2)*(rp2_nobuy + df*((1 - prod)*p20   + prod*p10)) 

        p3[0,0]   = pc_buy_p3*(rp3_buy + df*(prod*p30   + (1 - prod)*p40)) + (1-

pc_buy_p3)*(rp3_nobuy + df*((1 - prod)*p30   + prod*p20)) 

        p4[0,0]   = pc_buy_p4*(rp4_buy + df*(prod*p40   + (1 - prod)*p50)) + (1-

pc_buy_p4)*(rp4_nobuy + df*((1 - prod)*p40   + prod*p30)) 
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        n1[0,0]   = pc_buy_n1*(rn1_buy + df*((1 - prod)*zero0 + prod*n10)) + (1-

pc_buy_n1)*(rn1_nobuy + df*((1 - prod)*n10   + prod*n20)) 

        n2[0,0]   = pc_buy_n2*(rn2_buy + df*((1 - prod)*n10   + prod*n20)) + (1-

pc_buy_n2)*(rn2_nobuy + df*((1 - prod)*n20   + prod*n30)) 

        n3[0,0]   = pc_buy_n3*(rn3_buy + df*((1 - prod)*n20   + prod*n30)) + (1-

pc_buy_n3)*(rn3_nobuy + df*((1 - prod)*n30   + prod*n40)) 

        n4[0,0]   = pc_buy_n4*(rn4_buy + df*((1 - prod)*n30   + prod*n40)) + (1-

pc_buy_n4)*(rn4_nobuy + df*((1 - prod)*n40   + prod*n50)) 

     

     

        for i in range(iteration-1): 

            zero[0,i+1] = pc_buy_z *(rz_buy  + df*(prod*zero[0,i] + (1 - prod)*p1[0,i])) + (1-

pc_buy_z) *(rz_nobuy  + df*((1 - prod)*zero[0,i] + prod*n1[0,i])) 

            p1[0,i+1]   = pc_buy_p1*(rp1_buy + df*(prod*p1[0,i]   + (1 - prod)*p2[0,i])) + (1-

pc_buy_p1)*(rp1_nobuy + df*((1 - prod)*p1[0,i]   + prod*zero[0,i])) 

            p2[0,i+1]   = pc_buy_p2*(rp2_buy + df*(prod*p2[0,i]   + (1 - prod)*p3[0,i])) + (1-

pc_buy_p2)*(rp2_nobuy + df*((1 - prod)*p2[0,i]   + prod*p1[0,i])) 

            p3[0,i+1]   = pc_buy_p3*(rp3_buy + df*(prod*p3[0,i]   + (1 - prod)*p4[0,i])) + (1-

pc_buy_p3)*(rp3_nobuy + df*((1 - prod)*p3[0,i]   + prod*p2[0,i])) 

            p4[0,i+1]   = pc_buy_p4*(rp4_buy + df*(prod*p4[0,i]   + (1 - prod)*p50))     + (1-

pc_buy_p4)*(rp4_nobuy + df*((1 - prod)*p4[0,i]   + prod*p3[0,i])) 

            n1[0,i+1]   = pc_buy_n1*(rn1_buy + df*((1 - prod)*zero[0,i] + prod*n1[0,i])) + (1-

pc_buy_n1)*(rn1_nobuy + df*((1 - prod)*n1[0,i]   + prod*n2[0,i])) 



www.manaraa.com

 

36 

 

            n2[0,i+1]   = pc_buy_n2*(rn2_buy + df*((1 - prod)*n1[0,i]   + prod*n2[0,i])) + (1-

pc_buy_n2)*(rn2_nobuy + df*((1 - prod)*n2[0,i]   + prod*n3[0,i])) 

            n3[0,i+1]   = pc_buy_n3*(rn3_buy + df*((1 - prod)*n2[0,i]   + prod*n3[0,i])) + (1-

pc_buy_n3)*(rn3_nobuy + df*((1 - prod)*n3[0,i]   + prod*n4[0,i])) 

            n4[0,i+1]   = pc_buy_n4*(rn4_buy + df*((1 - prod)*n3[0,i]   + prod*n4[0,i])) + (1-

pc_buy_n4)*(rn4_nobuy + df*((1 - prod)*n4[0,i]   + prod*n50)) 

                     

        zero_buy   = (zero[0,iteration-1] + p1[0,iteration-1])/2 

        zero_nobuy = (zero[0,iteration-1] + n1[0,iteration-1])/2 

         

        p1_buy     = (p1[0,iteration-1]   + p2[0,iteration-1])/2 

        p1_nobuy   = (p1[0,iteration-1]   + zero[0,iteration-1])/2 

         

        p2_buy     = (p2[0,iteration-1]   + p3[0,iteration-1])/2 

        p2_nobuy   = (p2[0,iteration-1]   + p1[0,iteration-1])/2 

         

        p3_buy     = (p3[0,iteration-1]   + p4[0,iteration-1])/2 

        p3_nobuy   = (p3[0,iteration-1]   + p2[0,iteration-1])/2 

         

        p4_buy     = (p4[0,iteration-1]   + p5)/2 

        p4_nobuy   = (p4[0,iteration-1]   + p3[0,iteration-1])/2 

         

        n1_buy     = (n1[0,iteration-1]   + zero[0,iteration-1])/2 
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        n1_nobuy   = (n1[0,iteration-1]   + n2[0,iteration-1])/2 

         

        n2_buy     = (n2[0,iteration-1]   + n1[0,iteration-1])/2 

        n2_nobuy   = (n2[0,iteration-1]   + n3[0,iteration-1])/2 

         

        n3_buy     = (n3[0,iteration-1]   + n2[0,iteration-1])/2 

        n3_nobuy   = (n3[0,iteration-1]   + n4[0,iteration-1])/2 

         

        n4_buy     = (n4[0,iteration-1]   + n3[0,iteration-1])/2 

        n4_nobuy   = (n4[0,iteration-1]   + n5)/2 

     

        if zero_buy > zero_nobuy: 

            pc_buy_z_tmp = 0.9 

        else: 

            pc_buy_z_tmp = 0.1 

             

        if p1_buy > p1_nobuy: 

            pc_buy_p1_tmp = 0.9 

        else: 

            pc_buy_p1_tmp = 0.1 

         

        if p2_buy > p2_nobuy: 

            pc_buy_p2_tmp = 0.9 
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        else: 

            pc_buy_p2_tmp = 0.1 

             

        if p3_buy > p3_nobuy: 

            pc_buy_p3_tmp = 0.9 

        else: 

            pc_buy_p3_tmp = 0.1 

             

        if p4_buy > p4_nobuy: 

            pc_buy_p4_tmp = 0.9 

        else: 

            pc_buy_p4_tmp = 0.1 

             

        if n1_buy > n1_nobuy: 

            pc_buy_n1_tmp = 0.9 

        else: 

            pc_buy_n1_tmp = 0.1 

         

        if n2_buy > n2_nobuy: 

            pc_buy_n2_tmp = 0.9 

        else: 

            pc_buy_n2_tmp = 0.1 
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        if n3_buy > n3_nobuy: 

            pc_buy_n3_tmp = 0.9 

        else: 

            pc_buy_n3_tmp = 0.1 

             

        if n4_buy > n4_nobuy: 

            pc_buy_n4_tmp = 0.9 

        else: 

            pc_buy_n4_tmp = 0.1 

             

        if pc_buy_z == pc_buy_z_tmp and pc_buy_p1 == pc_buy_p1_tmp and pc_buy_p2 == 

pc_buy_p2_tmp and pc_buy_p3 == pc_buy_p3_tmp and pc_buy_p4 == pc_buy_p4_tmp and 

pc_buy_n1 == pc_buy_n1_tmp and pc_buy_n2 == pc_buy_n2_tmp and pc_buy_n3 == 

pc_buy_n3_tmp and pc_buy_n4 == pc_buy_n4_tmp: 

            break 

     

        else: 

            pc_buy_z  = pc_buy_z_tmp 

            pc_buy_p1 = pc_buy_p1_tmp  

            pc_buy_p2 = pc_buy_p2_tmp  

            pc_buy_p3 = pc_buy_p3_tmp  

            pc_buy_p4 = pc_buy_p4_tmp  

            pc_buy_n1 = pc_buy_n1_tmp 
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            pc_buy_n2 = pc_buy_n2_tmp 

            pc_buy_n3 = pc_buy_n3_tmp 

            pc_buy_n4 = pc_buy_n4_tmp 

     

    avf_final = np.array([[prod, n4_buy, n4_nobuy, n3_buy, n3_nobuy, n2_buy, n2_nobuy, 

n1_buy, n1_nobuy, zero_buy, zero_nobuy, p1_buy, p1_nobuy, p2_buy, p2_nobuy, p3_buy, 

p2_nobuy, p4_buy, p4_nobuy]]) 

     

    Final_Data.append(avf_final) 

     

Final_Data = np.array(Final_Data).reshape([11,19]) 
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